Context-Based Gustafson-Kessel Clustering with Information Granules

نویسندگان

  • Myung-Won Lee
  • Keun-Chang Kwak
چکیده

In this paper, we propose a Context-based Gustafson-Kessel (CGK) clustering that builds Information Granulation (IG) in the form of fuzzy set. The fundamental idea of this clustering is based on Conditional Fuzzy C-Means (CFCM) clustering introduced by Pedrycz. The proposed clustering develops clusters preserving homogeneity of the clustered patterns associated with the input and output space. Furthermore, this performs the local adaptation of the distance metric to the shape of the cluster based on fuzzy covariance matrix and linguistic contexts. The experimental results reveal that the proposed clustering algorithm yields better performance in comparison with Fuzzy C-Means (FCM), GK, and CFCM clustering introduced in the previous literature for synthesis data set. Keywords—Gustafson-Kessel clustering, information granulation, conditional fuzzy c-means clustering, linguistic context

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm

Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

A Generalization of Gustafson-Kessel Algorithm using a New Constraint Parameter

In this paper one presents a new fuzzy clustering algorithm based on a dissimilarity function determined by three parameters. This algorithm can be considered a generalization of the Gustafson-Kessel algorithm for fuzzy clustering.

متن کامل

Fuzzy Databases Using Extended Fuzzy C-Means Clustering

In recent years, the Fuzzy Relational Database and its queries have gradually become a new research topic. Fuzzy Structured Query Language (FSQL) is used to retrieve the data from fuzzy database because traditional Structured Query Language (SQL) is inefficient to handling uncertain and vague queries. The proposed model provides the facility for naïve users for retrieving relevant results of no...

متن کامل

Recursive clustering based on a Gustafson-Kessel algorithm

In this paper an on-line fuzzy identification of Takagi Sugeno fuzzy model is presented. The presented method combines a recursive Gustafson–Kessel clustering algorithm and the fuzzy recursive least squares method. The on-line Gustafson–Kessel clustering method is derived. The recursive equations for fuzzy covariance matrix, its inverse and cluster centers are given. The use of the method is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014